
Uni

Cup

Day 1: Anton Trygub Contest 1
1st OCPC, Winter 2023, Saturday, February 18, 2023

Problem A. Adjacent Product Sum

Let a1 ≥ a2 ≥ . . . ≥ an. Then, we can show that one of the optimal ways to arrange them on the circle
is: a1, a3, . . . , a2bn−1

2
c+1, a2bn2 c, . . . , a4, a2. In other words, first put all elements on odd positions, then all

on even positions, in a different order.

For example, for n = 7, this would look as: (a1, a3, a5, a7, a6, a4, a2).

Let’s show that it’s optimal. We will use a simple fact: if a ≥ b, c ≥ d, then ac+ bd ≥ ad+ bc (as this is
equivalent to (a− b)(c− d) ≥ 0).

Let’s show by induction that for each k there exists an optimal arrangement (optimal = with the largest
possible sum of adjacent products) in which elements a1, a2, . . . , ak form a consecutive segment, and
numbers ak−1 and ak are at the ends of this segment. To show this for k = 2, suppose that a1 and a2
aren’t adjacent. Let the element directly clockwise to a1 be ax, and directly clockwise to a2 be ay. Then,
let’s reverse entire subsegment from ax to a2 (considered clockwise). The sum of products will change by
a1a2 + axay − a1ax − a2ay ≥ 0.

Now that we proved our statement for k = 2, let’s make the induction step: consider an optimal
arrangement in which this holds for k − 1. Wlog, in this segment ak−2 is the first element, and ak−1
the last clockwise (that is, if we traverse this segment clockwise, ak−2 is the first element we see, and ak−1
the last one.

Suppose that ak isn’t adjacent to ak−2. Then, let ax be the element next counterclockwise to ak−2 (by
choice x > k), and ay be the next element counterclockwise to ak (by choice x ≥ k−1). Then, let’s reverse
the (clockwise) segment from ak to ax. The sum will change by akak−2 + axay − ak−2ax − akay, which is
nonnegative as ak−2 ≥ ay and ak ≥ ax.

So, just sort the elements, arrange them in this order, and find the sum of products.

Problem B. Binary Arrays and Sliding Sums

Let’s try to see how arrays a with the same f(a) look. Consider all arrays a for which f(a) = b. What do
we know about them?

First, we know ai+k−ai = bi+1− bi. Consider elements ai, ai+k, ai+2k, . . . , ai−k, ai (add k until we meet ai
again for the first time). What’s the length of this cycle? It’s n

gcd(n,k) , where gcd(n, k) denotes the greatest
common divisor of n and k.

Let’s denote the set of indexes for which ai is in this cycle by S. If at least for one i ∈ S, bi+1 − bi 6= 0,
then we can uniquely determine the values of all ai for i ∈ S (as aj−ai can only be 1 when aj = 1, ai = 0,
and can only be −1 when aj = 0, ai = 1). If all these bi are equal, then all ai are also equal, but here we
have two choices: to make all of them equal to 0 or to 1.

Now, suppose that there are t cycles, in which all ai have to be equal. If we choose x of these cycles to
have all ones, and the rest to have all zeros, then the sum on each subsegment of length k increases by
x k
gcd(n,k) (each cycle intersects with each segment of length k by exactly k

gcd(n,k) cells). So, for a given a,
all arrays a1 with f(a1) = f(a) look as follows:

• Consider all gcd(n, k) cycles (ai, ai+k, ai+2k, . . .) for each i from 1 to gcd(n, k).

• For each of these cycles: if not all ai in it are equal, then in all arrays a1 with f(a1) = f(a), these
a1i will be the same as in a.

• If there are t cycles in which all ai are equal, and x of them consist of all ones, then in a1 in these
cycles, all elements are also equal, and exactly x of them consist of all ones.

Now, let’s count the number of different equivalent classes. Let l = gcd(n, k). Suppose that t of these
cycles have all equal elements. Then there are

(
l
t

)
ways to choose these cycles, and 2

n
l −2 ways to fill each

Page 1 of 11

Uni

Cup

Day 1: Anton Trygub Contest 1
1st OCPC, Winter 2023, Saturday, February 18, 2023

other cycle. As for t cycles with equal elements, we only care how many of those cycles are all ones, and
there are t+ 1 possibilities. So, we have to find

t=l∑
t=0

(t+ 1)

(
l

t

)
(2

n
l − 2)l−t

Denote 2
n
l − 2 = a. Note that t

(
l
t

)
= l!

(l−t)!(t−1)! = l
(
l−1
t−1
)
. Now, rewrite:

t=l∑
t=0

(t+ 1)

(
l

t

)
al−t =

t=l∑
t=0

(
l

t

)
al−t + l

t=l∑
t=1

(
l − 1

t− 1

)
al−t−1 = (a+ 1)l + l(a+ 1)l−1

(Here we just used that (x+ 1)k =
∑k

t=0 x
t
(
k
t

)
)

So, we can solve each case in O(log) with simple binary exponentiation.

Problem C. Count Hamiltonian Cycles

First, let’s get some trivial bounds on the length of the shortest cycle. Take any position i (1 ≤ i ≤ 2n−1).
Let the numbers of W, B in s[1 : i] be leftW , leftB correspondingly.

Consider any Hamiltonian cycle. Suppose that it contains x edges connecting node from {1, 2, . . . , i} to
{i+1, i+2, . . . , 2n}. The degree of each node in Hamiltonian cycle is 2, so the number of edges connecting
nodes from {1, 2, . . . , i} is 2i−x

2 . So, x has to be even. Also, note that the number of edges connecting
nodes from {1, 2, . . . , i} can’t exceed 2min(leftW , leftB). So,

2i− x

2
≤ 2min(leftW , leftB) =⇒ x ≥ 2(leftW + leftB)− 4min(leftW , leftB) = 2|leftW − leftB|

Also, of course, x 6= 0, as otherwise graph wouldn’t be connected. So, x ≥ 2max(1, |leftW − leftB|).
It turns out that these bounds are all achievable, so if we just wanted to learn the length of the shortest,
we could just find all these bounds over each position i and sum them up. (Proof that these bounds are
achievable will follow from what’s written below).

But we are interested in the number of such cycles. For that, let’s analyze the structure of cycles in which
all of these bounds hold. Again, choose some i and define leftW , leftB as before.

It’s easy to see that:

• If leftW > leftB, then the graph on {1, 2, . . . , i} consists of leftW − leftB paths of form
WBWBW . . . BW .

• If leftB > leftW , then the graph on {1, 2, . . . , i} consists of leftB − leftW paths of form
BWBWB . . .WB.

• If leftB = leftW , then the graph on {1, 2, . . . , i} consists of a single path WBWB . . .WB.

It’s easy to see that if this holds for every i, then all bounds on the numbers of edges which connect a
node from {1, 2, . . . , i} to {i+ 1, i+ 2, . . . , 2n} will match exactly.

Now, let dpi denote the number of ways to connect edges on the first i nodes so that all first i conditions
hold. How do we update this dp?

Assume now leftW > leftB+1. If the next character is W, then we have to add a path from a single node.
If the next character is B, then we have to reduce the number of paths by 1, by connecting B to the ends
of some two paths. But here we run into a problem: it matters if the path has a length larger than 1 or
not, as in that case, it has two "distinct"ends or not. To solve this issue, let’s modify our problem a bit.

Page 2 of 11

Uni

Cup

Day 1: Anton Trygub Contest 1
1st OCPC, Winter 2023, Saturday, February 18, 2023

Let’s find the number of oriented Hamiltonian cycles. Then we could divide this number by 2 and obtain
the answer to the initial problem. All the conditions remain the same, just paths become oriented.

Now, making a transition is easy! As now, when we are processing B in the case above, we
don’t have to choose 2 ends; we have to choose a right end and a left end. There are precisely
(leftW − leftB) · (leftW − leftB − 1) to do so.

Now updating the dp is easy; you are just dealing with some cases. Briefly:

• leftW > leftB. If next character is W, dpi+1 = dpi. If next character is B, then, if leftW > leftB+1,
dpi+1 = dpi(leftW − leftB) · (leftW − leftB − 1). If leftW = leftB +1, dpi+1 = 2dpi (there are two
ways to prolong the chain).

• leftB > leftW is symmetric.

• leftW = leftB. Wlog next character is W. Then we have to connect this W to the only black end of
the previous chain, so dpi+1 = dpi.

We can calculate this in O(n).

Problem D. Distance Parities

Let’s add an edge between each i, j, the distance between which is odd. Let’s show that if there is any
graph for which the distances match, this graph also has to work.

For any i, j between which the distance is odd, the parity will match. For any i, j between which the
distance is even, say, 2t, there is a node k on the shortest path between them, for which d(k, i) = 1,
d(k, j) = 2t− 1. Therefore, we drew edges (k, i) and (k, j), and the distance between i, j in our graph is
2, so the parities also match.

So, we should just add all these edges, and check if the graph is connected and all parities match. O(n3)
with Floyd-Warshall.

Problem E. Excellent XOR Problem

Let X be the XOR of all the elements. If X 6= 0, we can split into two parts arbitrarily, and their XORs
will be different.

If X = 0, then let’s try to split the array into 3 parts and see when it’s impossible. Let ax be the first
nonzero element of the array (if all elements are 0, clearly there is no solution). Let the first subarray be
a[1 : x]. We want to split the rest into two parts so that XOR in both isn’t 0 or ax (the XORs of those
parts can’t be equal, as then the XOR of the entire array would be ax, not 0).

So, if there is no such split, then for any y with x+ 1 ≤ y ≤ n, XOR on subarray a[x+ 1 : y] is 0 or ax.
However, this means that each element there is 0 or ax. So, all elements of the array are 0 or ax. But in
this case, XOR of any subarray is always 0 or ax, so there can’t be any such split.

So, the solution is: if X 6= 0, split arbitrarily. If X = 0, find the first nonzero element ax, take subarray
a[1 : x], and try all ways to split the rest into two parts. If you haven’t succeeded, there is no solution.

Problem F. F*** 3-Colorable Graphs

We will show that the answer is always 2 or 3. Let’s initially color nodes of the first part (from 1 to n) in
color 1 and the remaining in color 2.

It’s clear that if we don’t add any edges, the graph remains 2-colorable (and therefore 3-colorable).

Page 3 of 11

Uni

Cup

Day 1: Anton Trygub Contest 1
1st OCPC, Winter 2023, Saturday, February 18, 2023

If we add one edge (u, v), then just color node v in color 3, coloring will remain proper.

Now, suppose that we added two edges, and the graph is no longer 3-colorable. Let’s consider some cases.
Suppose that one of these two edges connects two nodes from different parts. Then, if the other edge is
(u, v), we can just color node v in color 3, and the coloring will remain proper. So, we have to add edges,
which connect nodes from the same part.

Let these edges be (u1, v1) and (u2, v2). If these edges share a node, say, u1 = u2, then we can just
color node u1 in color 3, and the coloring will be proper. Otherwise, let’s try coloring some endpoint
of each of these two edges in color 3. If we can’t get proper coloring this way, it means that all of the
edges (u1, u2), (u1, v2), (v1, u2), (v1, v2) are present in this graph. And indeed, if such a cycle of length 4 is
present in the graph, we can add edges (u1, v1) and (u2, v2), obtaining a subgraph on 4 nodes u1, v1, u2, v2,
in which each pair of nodes is connected, and which, therefore, isn’t 3-colorable.

Even if there is no 4-cycle, we can always add at most 3 edges to make the graph not 3-colorable. It’s
enough to show that we can choose 2 nodes u1, v1 from the first part, and nodes u2, v2 from the second
part, such that at least 3 edges among edges (u1, u2), (u1, v2), (v1, u2), (v1, v2) are present in this graph
(then we can add all remaining edges to obtain a complete graph on 4 nodes). Suppose that it doesn’t
exist. Then there is no edge (u, v) with u in the first part, v in the second, such that there is at least one
more edge from u and at least one more edge from v. Then for any edge (u, v), at least one of u, v is a leaf.
Then consider any non-leaf node u, it can be connected only to leaves, so u together with these leaves
forms a separate connected component, and the graph is not connected. This contradicts the problem
statement (graph is told to be connected).

So, answer is 2 if there is a 4-cycle u1, v2, v1, u2, and 3 otherwise. How to check if there is a 4-cycle?

Here is an algorithm that, for a given node, checks if it’s in some 4-cycle in O(n), giving total runtime
of O(n2). Consider node v, and it’s neighbors u1, u2, . . . , uk. v is contained in a 4-cycle iff there is a node
v1 6= v, which is connected to at least two nodes among u1, u2, . . . , uk.

Then, just start going through all neighbors of nodes u1, u2, . . . , uk, marking nodes which we meet (except
v). If we have to mark some node twice, we found a 4-cycle. This takes O(n) per node.

Problem G. Graph Problem With Small n

For convenience, we will number the vertices from 0 to n− 1.

First, we denote the subset of vertices i1, i2, . . . , ik as 2i1 + 2i2 + . . . + 2ik . Thus, each subset of vertices
of the graph corresponds to some number mask from 0 to 2n − 1.

Solution in O(2nn3).

Let dp[mask][u][v] denote whether there exists a Hamiltonian path starting at vertex u and ending at
vertex v on the vertices in the subset mask of the graph (thus mask must contain the bits u and v). We
can start by making dp[2v][v][v] = true for each vertex v.

We will go through the subsets in increasing order of their size. Note that dp[mask][u][v] = true if and
only if mask contains some vertex w 6= v such that:

• w is connected to v

• dp[mask − 2v][u][w] = true

(This vertex w — is the vertex adjacent to v in this potential Hamiltonian path).

So, for a given mask and a given pair (u, v), we can search all the candidates w in O(n), giving O(2nn3)
in total.

Solution in O(2nn2).

Instead of the Boolean variable dp[mask][u][v], let’s keep the number dp1[mask][u]. It will contain the bit

Page 4 of 11

Uni

Cup

Day 1: Anton Trygub Contest 1
1st OCPC, Winter 2023, Saturday, February 18, 2023

v if and only if dp[mask][u][v] = true. Also, for each vertex u, let’s keep a number neighi that contains
bit v if and only if there is an edge between vertices u and v.

Again, let’s calculate the value of dp1[mask][u] by iterating over mask in increasing order of subset size.
For each vertex v that is in mask, let’s try to determine whether the bit v is in dp1[mask][u]. Recall that
dp[mask][u][v] = true if and only if there is some vertex w 6= v in mask such that: w is connected to
v and dp[mask − 2v][u][w] = true. This is equivalent to saying that dp1[mask − 2v][u] and neighv have
at least one bit in common! We can find out if they share a bit in a single AND operation. So, for data
mask, u we can compute dp1[mask][u] in O(n), and therefore the total asymptotics is O(2nn2).

Solution for O(2nn).

This is still not enough, we need to do some more optimization.

Let’s calculate the value of dp1[mask][n−1] for allmask. We do this inO(2nn). Note that each Hamiltonian
path of the original graph must pass through the vertex n−1. From the calculated values of dp1 it is easy
to understand which vertices are reached by the Hamiltonian path from vertex 1. Consider some other
two vertices u, v < n − 1. It is easy to see that there is a Hamiltonian path between vertices u and v if
and only if there exist two subsets masku,maskv such that:

• u ∈ masku, v ∈ maskv

• Every vertex except n− 1 is in exactly one of these subsets. Vertex n− 1 is in both subsets.

• u ∈ dp1[masku][n− 1], v ∈ dp1[maskv][n− 1]

In other words, only if there exists a partition of vertices into 2 groups (with n − 1 in each group), that
there exists a Hamiltonian path from u to n−1 in the first group and from n−1 to v in the second group.

But how to quickly determine this for each pair of vertices? For each vertex u, let’s keep a number ansu,
whose bit v is present if and only if there is a Hamiltonian path from u to v in the graph. Now, let’s
iterate over all masku (maskv is uniquely defined by masku, as 2n − 1 −masku + 2n−1), and for each
masku, let’s iterate over all u. For each of these u we make ansu = ansu OR dp1[maskv][n− 1].

The overall asymptotics is O(2nn).

Problem H. Help Me to Get This Published
Preface. Help me to get this published, please. Sorry for the long tutorial. It requires only one small
piece of knowledge:

Well-known fact. If Gallai coloring contains at least three different colors, then there is a color that
spans a disconnected graph.

Now let’s dive into some interesting observations I haven’t seen before and couldn’t find in the literature.
If you find them, sorry :(. If not, help me to get this published.

We will also denote the color of the edge between nodes i, j by c(i, j).

Lemma 1. Suppose that color 1 spans a disconnected graph, let A be one of the connected components
of this graph. Then for any nodes u, v ∈ A and w /∈ A, c(u,w) = c(v, w).

Proof of Lemma 1. First, consider any edge (u1, v1) of color 1 in A. For any node w /∈ A, consider
triangle u1v1w. c(u1, v1) = 1, but c(u1, w) 6= 1, c(v1, w) 6= 1, so c(u1, w) = c(v1, w).

Now, consider any nodes u, v ∈ A. There is a simple path of color 1 between then, let it be x0, x1, . . . , xk
with x0 = u, xk = v. Then c(w, u) = c(w, x0) = c(w, x1) = . . . = c(w, xk) = c(w, v), as desired. �

Theorem 2. For any Gallai coloring, the following inequality holds:

n∑
i=1

1

2d(i)
≥ 1

Page 5 of 11

Uni

Cup

Day 1: Anton Trygub Contest 1
1st OCPC, Winter 2023, Saturday, February 18, 2023

Proof of Theorem 2. We will prove this statement by induction by n. It’s trivial for n ≤ 3.

Consider n ≥ 4. If there are at most 2 different colors, then
∑n

i=1
1

2d(i)
≥ n

4 ≥ 1, as desired. Otherwise,
there exists a color that spans a disconnected graph. Wlog, this is color 1.

Consider any connected component of color 1, A. By Lemma 2.1, for any node v /∈ A there exists some
color c(v), such that all edges between v and A have color c(v).

Let k be the number of different colors among c(v) (for v /∈ A). Consider the graph obtained by compressing
A into a single node a with d(a) = k. Here, c(a, v) = c(v) for v /∈ A. By the induction hypothesis, we
have:

∑
v/∈A

1

2d(v)
+

1

2k
≥ 1

Now, consider separately the graph spanned by nodes in A. Let d1(v) denote the color degree of node v
with respect to this graph (where v ∈ A). By the induction hypothesis, we have:

∑
v∈A

1

2d1(v)
≥ 1

Now note that for each v ∈ A, d(v) ≤ d1(v) + k (as outside of A v has precisely k different colors). Then
we can write:

n∑
i=1

1

2d(i)
=
∑
v/∈A

1

2d(v)
+
∑
v∈A

1

2d(v)
≥
∑
v/∈A

1

2d(v)
+
∑
v∈A

1

2d1(v)+k
=
∑
v/∈A

1

2d(v)
+

1

2k

∑
v∈A

1

2d1(v)
≥
∑
v/∈A

1

2d(v)
+

1

2k
≥ 1

This proves Theorem 2. �

This is already a necessary condition for our degree sequence. But it’s not sufficient.

Lemma 3. Consider Gallai coloring of Kn, in which one of color degrees is n− 1. Then the color degrees
are n− 1, n− 1, n− 2, n− 3, . . . , 1 in some order.

Proof of Lemma 3. Without loss of generality, let node n have d(n) = n − 1. All colors c(i, n) for
1 ≤ i ≤ n− 1 are different, wlog c(i, n) = i for 1 ≤ i ≤ n− 1.

For any 1 ≤ i < j ≤ n − 1, from triangle ijn we get that c(i, j) is i or j. For each i, j, let’s draw an
oriented edge i→ j if c(i, j) = i, and j → i if c(i, j) = j. As there are no rainbow triangles, there are no
directed cycles of length 3 in this graph.

Remember that if the tournament graph contains no directed cycle of length 3, it is acyclic. This is a
well-known fact, and can be proved by considering the shorted directed cycle (x1, x2, . . . , xk, x1). Clearly
k ≥ 4. If edge between x1, x3 is oriented x3 → x1, then there is a shorter directed cycle (x1, x2, x3, x1),
else there is a shorter directed cycle (x3, x4, . . . , x1, x3). So, nodes 1, 2, . . . , n−1 can be arranged in a row,
so that all edges go from left to right. The color degree of the i-th node in this row will be exactly i. �

Theorem 4. Let d(1) ≤ d(2) ≤ . . . ≤ d(n) be the color degree sequence of some Gallai coloring of graph
Kn. Let’s also define d(0) = 0. Then, for each 1 ≤ k ≤ n:

n∑
i=k

1

2d(i)−d(k−1)
≥ 1

Proof of Theorem 4. For k = 1 this result is the same as the result of Theorem 2. Let’s consider
k ≥ 2.

Consider any i ≥ k. How many different colors go from i to nodes 1, 2, . . . , k − 1? Suppose that there
are edges from at least x different colors from i to nodes from 1 to k − 1. Let’s choose one edge of each

Page 6 of 11

Uni

Cup

Day 1: Anton Trygub Contest 1
1st OCPC, Winter 2023, Saturday, February 18, 2023

color, and denote the endpoints of these edges different from i by v1, v2, . . . , vx. Consider graph on nodes
v1, v2, . . . , vx and node i. It contains x + 1 nodes, and the color degree of node i in it is x, so in this
subgraph, at least one more node has to have color degree x, by the lemma above. But then x ≤ d(k− 1).

Now, consider subgraph on nodes k, k + 1, . . . , n. For any i ≥ k, there are at most d(k − 1) colors going
from i to nodes 1, 2, . . . , k − 1, so the color degree of node i in this new graph is at least d(i)− d(k − 1).
Then we can just apply Theorem 2 to this graph. �

It turns out that this condition is actually sufficient. This part is not very interesting, I will skip it, but
the idea is that you can get construct Gallai colorings with such degree sequences as follows: take Gallai
coloring of Kn−1, take any node i, clone it, and add an edge between i and its clone. This way, we can
make d(i) → d(i), d(i), or d(i) → d(i) + 1, d(i) + 1. These operations allow to achieve all valid degree
sequences.

Now, we can use these criteria to actually solve the problem. We will make a dp, going from degrees n− 1
to 1. When at number k, we will maintain the number of ways to use cnt numbers ≥ k, with the current
value of b

∑
2k−xc being equal to sum (where x ranges over all cnt numbers ≥ k). This gives a simple

O(n4) dp solution.

Problem I. Increasing Grid

Let’s subtract from ai,j the number i + j − 1. It is easy to see that now all rows and columns must be
non-decreasing. Also, 0 ≤ a1,1 and an,m ≤ 1. So, all numbers must be between 0 and 1. This is also a
sufficient condition: if 0 ≤ ai,j ≤ 1, then in the initial table this number was i+ j − 1 or i+ j, that is, it
was in the range from 1 to n+m.

So, we are interested in tables of ones and zeros that do not descend through rows and columns, some
elements of which are given to us (if ai,j − (i+ j − 1) /∈ {0, 1} before subtraction, then such tables do not
exist, and we immediately print 0).

For each one, all the numbers in the rectangle to the right and down from it must also be ones. For each
zero, all numbers in the rectangle to the left and up from it must also be zeros. So, if some zero is to the
right and down from some one, the answer is 0.

We can do the filling above in the following way: for each row from 1 to n, for each column from 1 to m,
if ai,j = 1, then make ai+1,j and ai.j+1 also equal to 1 (if these cells exist). If at some point we have to
make zero equal to one, then there are no solutions. Then we will do the same thing with zeros.

Now we need to figure out how to count the number of ways to assign other values.

Note that the tables of ones and zeros that do not descend along the rows and columns have the following
form: there is a path from the lower left corner to the upper right corner that goes only up and to the
right along the sides of the grid, such that on one side of this path there are only zeros, and on the other
side only ones. Let’s calculate the number of such paths if we already know some values.

Consider the nodes of our table. They are formed by the intersection of n + 1 horizontal and m + 1
vertical lines. Let’s denote by dpi,j the number of ways to draw a path that goes only up and to the right,
from the lower left corner (i.e., the intersection of the nth horizontal and 0th vertical) to the node at
the intersection of the ith horizontal and jth vertical, so that all the numbers to the left of this path are
zeros, and all the numbers to the right are ones. We start with dpn,0 = 1, and we need to find dp0,m.

This dp is quite easy to calculate: we need to add to dpi,j some of the numbers dpi+1,j and dpi,j−1,
depending on whether the path satisfies all conditions.

The asymptotics is O(n2).

Problem J. Jewel of Data Structure Problems

First, let’s see how to determine the beauty of a given permutation.

Page 7 of 11

Uni

Cup

Day 1: Anton Trygub Contest 1
1st OCPC, Winter 2023, Saturday, February 18, 2023

If the whole permutation is odd, then its beauty is n. Suppose that the permutation is even.

For i, we denote by ci the number of inversions that include pi, that is, the number of indices j for which
j < i and pj > pi, or j > i and pj < pi. If any of the numbers ci is odd, then we can consider a subsequence
of all elements except the i-th, and it will be odd. In this case the beauty will be n− 1.

Otherwise, all ci are also even. Suppose that there is at least one inversion in the permutation, say, i < j
and pi > pj . Then consider the subsequence containing all elements except i and j. It is odd (because
we have removed all inversions containing pi or pj , but the inversion formed by pi and pj we have to
remove only once). So, in this case the beauty is n − 2. If there are no inversions, then the permutation
is (1, 2, . . . , n). All its subsequences are sorted, so its beauty is −1.
It remains to understand how to find this beauty quickly. Note the following: ci is even if and only if
pi mod 2 = i mod 2. Let us show this. Let x — the number of indices j from 1 to i− 1 for which pj < pi.
Then to the left of pi i − 1 − x elements form an inversion of ai. On the right pi − 1 − x elements form
an inversion of ai. Thus, in total ai lies in i− 1− x+ pi − 1− x = (i+ pi)− 2(x+ 1) inversions. So ci is
even if and only if i+ pi is even, i.e. only if i and pi have the same parity.

Let us calculate the parity of p from the beginning. It is easy to see that the parity of p is equal to the
parity of n − cycles, where cycles — the number of cycles in the permutation p. Indeed, swapping two
elements changes the parity of the permutation (a very well-known fact), and we can sort our permutation
by exactly n− cycles of swapping two elements.

Also, we keep cnt_eq, cnt_same_par — the number of indices for which pi = i, and the number of
indices for which pi mod 2 = i mod 2. It is clear how to update these values after each exchange.

Now, we answer each query as follows: if the permutation is odd, the beauty is n. Otherwise, if
cnt_same_par 6= n, the beauty is n− 1. Otherwise, if cnt_eq 6= n, then the beauty is n− 2, otherwise,
the permutation is sorted and the beauty is −1.
The asymptotics is O(n+ q).

Problem K. King of Swapping

Let’s look at the position where the number n is located. We must be able to move n to any position. At
the same time, we can move n from position u to position v (in one operation) if and only if pu > pv.

Thus, if we can move n from any vertex to any vertex, then in an oriented graph whose edges are (ui, vi),
we can reach any vertex from any vertex (such graphs are also called strongly connected).

It turns out that this is a sufficient condition. Before proving this, let us tell you how to determine that
a graph is strongly connected. It is enough to check that it is possible to get from vertex 1 to any other
vertex and from any other vertex to vertex 1. Each of these checks is done by one dfs, and therefore the
asymptotics is O(n+m).

Now we prove that this is a sufficient condition.

Consider any oriented cycle in our graph, i.e. the sequence v1, v2, . . . , vk such that we have operations
(v1, v2), (v2, v3), . . . , (vk−1, vk), (vk, v1). We will show that in this loop, we can rearrange the elements as
we like. Without loss of generality, the numbers in positions v1, v2, . . . , vk are 1, 2, . . . , k. Let us show that
we can get any permutation of the numbers from 1 to k.

First, we show that from any situation, we can get a permutation where pv1 = 1, pv2 = 2, . . . , pvk = k.
Indeed, first we move k around until it is in vk, then k − 1, . . ., then 2 and 1.

Now we show that from the permutation (1, 2, . . . , k) we can get some cyclic shift of the permutation
(k, k − 1, . . . , 1). We show this by induction, for k = 1, 2 the statement is obvious. Transition:
first, we exchange k with the next number in the cycle k − 2 times, obtaining the permutation
(2, 3, . . . , k− 2, k, k− 1, 1). Now "combine into one element"k and k− 1 (we can exchange them together:
(k, k − 1, x)→ (k, x, k − 1)→ (x, k, k − 1)). We have an assertion for k − 1.

Now we show that from the shift (k, k − 1, . . . , 1) we can get any other permutation. Let us reverse all

Page 8 of 11

Uni

Cup

Day 1: Anton Trygub Contest 1
1st OCPC, Winter 2023, Saturday, February 18, 2023

operations: if the original operation was (ui, vi), we will consider the operation (vi, ui). Suffice it to show
that by applying these operations we can get from any permutation to a cyclic shift (k, k− 1, . . . , 1), but
we do it in exactly the same way: first we put k in place, then k − 1, . . . , 2, 1.

This completes the proof of the statement for the loop. Then it is easy to show that we can get any
permutation if the graph is strongly connected. For example, consider any two positions u, v (u 6= v).
There is a simple cycle with positions u and v. In this cycle we can rearrange the elements in any way, so
we can simply swap pu, pv. So, we can swap any two elements, so we can get any permutation from any
permutation.

Problem L. Least Annoying Constructive Problem

Odd n. Let n = 2k + 1.

We will imagine these nodes on a circle, numbered from 1 to n, and use the cyclic notation of nodes; that
is, node n+ i is the same as node i for any i.

Consider the following construction. For each i from 1 to n, output the following k edges:
(i, i+ 1), (i− 1, i+ 2), (i− 2, i+ 3), . . . , (i− k + 1, i+ k). On the circle, view these as k edges parallel to
edge (i, i+ 1). Let’s call such k edges for a given i block i.

Let’s show that this works. Consider any n− 1 = 2k consecutive edges. Such 2k edges completely contain
some block, wlog block 2, and contain some suffix of block 1, let’s say of length x, and some prefix of
block 3 of length k − x.

After we drew block 2, we have k + 1 components remaining: k edges and a single node 3 + k. The idea
is that the i-th edge of block 1 connects i-th and i+ 1-st of these components, the same for i-th edge of
block 3. Then it’s easy to see that the suffix of block 1 of length x connects the last x + 1 components
into a single component, and the prefix of block 3 of length k − x connects this resulting component and
the first k − x components.

Even n. Let n = 2k + 2. Let’s once again draw 2k + 1 nodes on a circle, and let the center of this circle
be point 2k+ 2. We will once again number the points on the circle cyclically mod 2k+ 1 (note that this
doesn’t apply to the center node 2k + 2).

Then, let the "block i"consist of the following k edges for each i from 1 to 2k + 1:
(i, i + 1), (i − 1, i + 2), (i − 2, i + 3), . . . , (i − k + 1, i + k), and the edge (i + k + 1, 2k + 2). You can
visualize this as: draw k edges parallel to (i, i + 1), and the edge from the center to the last remaining
point. Then, write down edges of these blocks for each i from 1 to 2k + 1, in this order.

The proof that this works is the same as in the odd case.

Problem M. Most Annoying Constructive Problem
First of all, forget about subarrays of length 1 whatsoever. By word subarray I only refer to subarrays of
length ≥ 2.

Let f(n) = n(n−1)
2 −bn−12 c. I claim that for all n ≥ 4, such a permutation exists for all 0 ≤ k ≤ f(n), and

doesn’t exist for larger k. n ≤ 3 I am sure you can do yourself.

Lemma. For n ≥ 4, we must have at least bn−12 c even subarrays.

Proof. We will show this by induction. For n = 4, 5 we can verify this with bruteforce.

Now, consider n ≥ 6. Suppose that some permutation [p1, p2, . . . , pn] of length n contains at most bn−12 c−1
even subarrays. By induction, however, we know that p[3 : n] has to contain at least this many even
subarrays. So, p contains exactly this many even subarrays, and all of them are in p[3 : n].

So, first, p1 > p2 > p3 (as subarrays p[1 : 2], p[2 : 3] have to be odd), and also for any i ≥ 3, both subarrays
p[1 : i], p[2 : i] have to be odd. So, for any i ≥ 3, the number of elements in p[2 : i] that are smaller than
p1 has to be even. As p2 < p1, p3 < p1, we get p4 > p1, p5 > p1, . . . , pn > p1. So, p1 = 3, p2 = 2, p3 = 1.
But then consider an array p[2 : i] for any i ≥ 4. It’s odd, but 2 forms only one inversion: with 1, so the

Page 9 of 11

Uni

Cup

Day 1: Anton Trygub Contest 1
1st OCPC, Winter 2023, Saturday, February 18, 2023

array p[3 : i] turns out to be even. So, arrays p[3 : i] are even for all i ≥ 4, and n− 3 ≤ bn−12 c − 1, which
leads to contradiction for n ≥ 6. �.

Now, let’s look at how we might construct such permutations. Once again, for n ≤ 5 we construct
everything simply by bruteforce. Now, consider n ≥ 6, and suppose that we already know how to construct
the permutations for all admissible pairs (n1, k) with n1 < n. Let’s consider some cases.

• k = 0. Then permutation [1, 2, . . . , n] works.

• 1 ≤ k ≤ n− 2. Then permutation [1, 2, . . . , k − 2, k − 1, k + 2, k, k + 1, k + 3, k + 4, . . . , n] works.

• n − 1 ≤ k ≤ f(n − 2) + n − 1. Then consider a permutation of length n − 2 with k − (n − 1) odd
subarrays, and append to it n, n− 1. Note that in such permutation p subarray p[n− 1 : n] is odd,
and for any 1 ≤ i ≤ n−2, subarrays p[i : n−1], p[i : n] have different parities, so we added precisely
n− 1 odd subarrays.

• k = f(n). Consider the following infinite sequence a:

4, 1, 6, 3, 8, 5, 10, 7, 12, 9, 14, 11, 16, . . .

Here at odd positions, we have even integers, starting from 4, and on even positions, we have odd
integers, starting from 1. Yes, 2 is missing, but it’s not a problem.

The key is that the only even subarrays in this sequence are of the form a[2i : 2i+ 1]. The proof is
left to the reader as an exercise.

So, we can take first n elements of this sequence, and "compress"them to a permutation, getting a
permutation with only bn−12 c even subarrays.

• f(n − 2) + n ≤ k < f(n). It turns out that the following construction works. Choose p1 and pn
somehow, and arrange the remaining elements in p[2 : n − 1] according to the permutation for
solve(n− 2, f(k − 2)). Proof of this fact is left to the reader.

If you believe this, then you can try all n2 pairs, until you find the one that works. You can check one
pair in O(1), after you precomputed the number of odd subarrays that particular first/last elements
add, even in O(n2).

Total complexity: O(n2). If you know how to write checker better than in O(n2), tell me.

Problem N. No Zero-Sum Subsegment
First, calculate the sum S = 2D + C − B − 2A of all numbers in the array. If S = 0, clearly, there is no
solution. If S < 0, let’s multiply everything by −1 (just swap A with D and B with C), the answer won’t
change. Now we suppose that S > 0.

We will model the situation as a walk on the integer line. We start at point 0, we have to make A jumps
to the left by 2, B jumps to the left by 1, C jumps to the right by 1, D jumps to the right by 2, and we
should never visit the same point twice. Our route, clearly, will end at point S.

Suppose we jump over segment [L,L + 1] at least 3 times. We can jump over this segment only in 3
ways: L ←→ L + 2, L ←→ L + 1, L − 1 ←→ L + 1. So, we must use all 3, and our journey has to be
L− 1→ L+ 1→ L→ L+ 2, or L+ 2→ L→ L+ 1→ L− 1.

Consider the first time in our route when we get to the point ≥ 1. It’s not hard to show that we can’t
get to any point < 0 after this: this would mean that we jumped over segment [0, 1] three times, but by
the observation above, it’s impossible, as we start from 0. So, if we are ever going to the left of 0, we are
doing this at the very beginning, then getting back to point 1, and staying in the > 0 area. Similarly, if
we ever go to the > S area, it’s in the very end.

Now let’s consider the ways in which we can go to this < 0 area and get back to 1. It turns out that there
are only 3 ways to do so:

Page 10 of 11

Uni

Cup

Day 1: Anton Trygub Contest 1
1st OCPC, Winter 2023, Saturday, February 18, 2023

• Way 1. Jumping to the left by 1, and then to the right by 2.

• Way 2. Jumping to the left k times by 2, then jumping to the left 1 time by 1, then jumping to
the right k + 1 times by 2.

• Way 3. Jumping to the left k times by 2, then jumping to the right 1 time by 1, then jumping to
the right k times by 2.

The ways to go to the > S area by a jump from S − 1 and get back to S are symmetric.

Now, we have 4 ways to "start"our journey: 3 ways to go into the < 0 area, and the remaining way is to
avoid going into the < 0 area. Similarly, we have 4 ways to "end"the journey. Now, let’s fix this "start"and
the "end"of the journey and look at the ways to get from point point X to point Y with X ≤ Y , with A
−2s, B −1s, C 1s, D 2s, if we aren’t allowed to go to < X and > Y areas.

First, we can’t jump to the left by 2. Indeed, suppose we jumped L + 2 → L. Then we have to jump
over [L,L + 1] at least 3 times, so our route has to contain L + 2 → L → L + 1 → L − 1. If it contains
L+ 1→ L− 1, therefore, it has to contain [L,L− 2], [L− 1, L− 3], and so on, impossible.

Second, if we ever jump to the left by 1, like L+1→ L, it’s within a subroute L−1→ L+1→ L→ L+2.

So, we must have A = 0, D ≥ 2B, and in the end, we are just arranging C jumps of length 1, B jumps
of length 3, and D − 2B jumps of length 2 however we want, which is easy to count.

Now, let’s iterate over all possible ways to start and end the journey (42 in total), and sum up the
numbers of journeys over all these ways. For a fixed way, we know that we have to use all the −2s in the
"start"+ "end". Note that with this information, we can learn the exact number of each jump we will use
in "start"+ "end"together. There are, however, some options.

Let’s look at an example. Let’s say that we have 4 −2s initially, and we are choosing Way 2 for the
"start"and Way 3 for the "end". Then in the "start"we use k1 −2s, 1 −1, k1 + 1 2s, and in the "end"we
use k2 2s, 1 1, k2 2s. So, we use 4 −2s, 1 −1, 1 1, 5 2s in total, and the number of different ways is equal
to the number of solutions of k1+ k2 = 4 in positive integers (that is, 3). As we know exactly what jumps
we will use for "start"+"end we can find the number of ways to arrange the remaining jumps, as discussed
in the paragraph above. After that, we just multiply these numbers of ways.

After we precalculated all factorials and inverse factorials up to 3 · 106, the complexity is O(1) per test
case.

Page 11 of 11

