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Highlights

• The Scheduling problem with agreement graph on two identical machines is NP-hard for trees.
• The Scheduling problem with agreement graph on two identical machines is solvable in polynomial time for caterpillars (and also path

and star graphs).
• The Scheduling problem with agreement graph on two identical machines is solvable in polynomial time for cycles.
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Abstract

Scheduling problem with agreement graph on two identical machines is ad-
dressed. The problem consists in scheduling a set of non-preemptive jobs on
two identical machines in a minimum time. Agreement constraints are imposed
over the jobs. They express that only specific jobs can be scheduled concurrently
on different machines. These constraints are represented by an agreement graph.
This problem can be seen as a problem of partitioning a vertex-weighted graph
into cliques. The problem is NP-hard for an arbitrary agreement graph, but for
some particular graphs the problem is still open. For this reason, we study the
complexity of the problem for some specific graphs. In particular, we prove the
NP-hardness of the problem if the agreement graph is a tree. We also propose
polynomial time algorithms to solve the problem for the cases of caterpillars
and cycles.

Keywords: Scheduling; Identical machines; makespan; Agreement graph;
Conflict graph; Complexity.

1. Introduction

In this paper, we consider the problem of scheduling with agreements (SWA
in short) on two identical machines. The problem consists in scheduling a set
J of n non-preemptive jobs on two identical machines. Each job j ∈ J has a
processing time pj . The schedule is built according to agreement constraints be-
tween jobs modeled by an agreement graph G = (J,E). Two jobs are connected
in the agreement graph G if and only if these jobs can be scheduled concurrently
on different machines. The makespan (Cmax) is the completion time of the last
completed job. The objective of this problem is to minimize the makespan.

This problem was initially introduced as a problem of scheduling with con-
flicts (SWC in short) by Even et al. [1]. Instead of an agreement graph, the
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authors considered a conflict graph (the compliment of the agreement graph)
where each edge connects a pair of conflicting jobs that cannot be scheduled
concurrently on different machines. It is clear that the SWA problem and SWC
problem are polynomially equivalent; for this reason, we are also interested in
the SWC problem particularly in the literature review section.

The SWA problem appears generally in the literature as a problem of schedul-
ing with non-sharable resource constraints. A pair of non-agreeing jobs (con-
flicting jobs) represents jobs sharing the same resource [2]. In the literature, one
can find other applications, Bendraouche and Boudhar [3] presented an appli-
cation for the management of a workshop derived from the resource constrained
problem. Baker and Coffman [4] proposed an application in balancing the load
in a parallel computation. Halldórsson et al. [5] mentioned more applications
in traffic intersection control, frequency assignment in cellular networks, and
session management in local area network.

The cartography given in Figure 1 summarizes the results presented in this
paper and situates them in relation to some other known cases of the problem
on two machines.

Proper circular-arc
NP-harda

Cycle
O(n2)

Bipartite
NP-hardb

Tree
NP-hard

Caterpillar
O(n)

Path
O(n)

Star
O(n)

aGarey and Johnson [6] have proved the NPhardness of a problem equivalent to the SWA
for the case of two machines and complete agreement graphs which is a subproblem of the
SWA problem with proper circular-arc graphs.

bEven et al. [1] and Bendraouche and Boudhar [3] proved its NP-hardness.

Figure 1: Complexity hierarchy of the studied cases.

The present paper is organized as follows. In Section 1, we have introduced
the SWA problem by giving its definition and some applications. In Section 2,
we present an overview of the previous work. In Section 3, we prove the NP-
hardness of the SWA problem if the agreement graph is a tree. In Sections 4 and
5, we present two polynomial time algorithms which optimally solve the problem
when the agreement graph is either a caterpillar or a cycle. The conclusion
constitutes the final Section.
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2. Literature review

As mentioned above, the SWC problem was firstly introduced by Even et al.
[1]. The authors have proposed a polynomial time algorithm to solve the SWC
problem on two identical machines for processing times pj ∈ {1, 2}. They also
proposed a 4

3 -approximation algorithm to solve the SWA problem on two iden-
tical machines for processing times pj ∈ {1, 2, 3}. The authors proved that
the SWA problem on two machines for a bipartite graph and processing times
pj ∈ {1, 2, 3, 4} is APX-hard. The second part of their work was dedicated to
the online version of the problem.

Bendraouche and Boudhar [3] have proved the NP-hardness of the SWA
problem on two machines for a bipartite graph and processing times pj ∈
{1, 2, 3}. They also proved the NP-hardness of the problem on two machines
for a bipartite graph, processing times pj ∈ {1, 2}, and release dates rj ∈ {0, r}.
On the other hand, they proposed a polynomial time algorithm to solve the
problem on two identical machines for G being a bipartite graph and for which
the jobs of one part of the bipartite graph have unit processing times. Some list
scheduling algorithms for the approached resolution of the SWA problem on m
identical machines was proposed by the authors as well.

For two machines with processing times pj = a, Garey and Johnson [7]
proved that SWA can be solved in O(n2.5). Bendraouche et al. [8] extended
the polynomial status of SWA for pj ∈ {1, 2} to pj ∈ {a, 2a}. In the same
paper, these authors proved the NP-hardness of this problem on two machines,
bipartite agreement graphs and two different processing times: pj ∈ {a, 2a+ b}
(b �= 0). By this result, Bendraouche et al. [8] thoroughly closed the complexity
status of SWA for two machines with at most two processing time values. In
the second part of their study, the authors have proved the equivalence between
the SWA problem and the resource constrained scheduling problem [9] where
the availability of each resource is equal to one and the requirement of each job
for any resource is at most one.

In addition, Bendraouche and Boudhar [10] have proved the NP-hardness
of the SWA problem on two machines for agreement graphs of the form G =
(A ∪ B,E) where sets A and B have a particular structure. They have also
proposed some polynomial cases for specific split graphs and complements of
bipartite graphs.

Baker and Coffman [4] have called Mutual Exclusion Scheduling (MES) the
SWC problem in which each job requires one unit of processing time. This
problem corresponds exactly to a minimum coloring of the conflict graph G such
that each color appears at most m times. The MES problem is NP-hard since
the problem of finding a minimum coloring of a graph is NP-hard. However,
there are many special graph classes for which the MES problem is solvable
in polynomial time. For more results about the MES problem, the interested
readers are referred to the papers [3, 11].

Previous results dealing with the complexity of the MES problem for m
machines are summarized as follows. The MES problem is polynomial for:
bipartite graphs and co-graphs with a fixed number of machines, interval graphs
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for m ≥ 4 (see Bodlaender and Jansen [12]), permutation graphs for m ≥ 6 (see
Jansen [13]) and bounded tolerance graphs for m ≥ 3 (see Gardi [11]). The
MES problem has been proved to be NP-hard on: split graphs for m ≥ 3 (see
Gardi [11]), bipartite graphs, and forests for m ≥ 3 (see Bodlaender and Jansen
[12]), collection of disjoint cliques for m ≥ 3 (see De Werra [14]), co-graphs (see
Bodlaender and Jansen [12]), and proper circular arc graphs for m ≥ 3 (see
Gardi [11]).

Tellache and Boudhar [15] have developed mathematical models and a branch
and bound algorithm for the two-machine flow shop problem with unit-time op-
erations and conflict graph. They also studied in [16] the problem of scheduling
with conflict graph but in an open shop system: they discussed the complex-
ity of different versions of the problem and they presented lower bounds and
heuristic algorithms. In [17], Tellache and Boudhar have proved that the flow
shop problem is NP-hard for several conflict graphs. Then, they presented
polynomial-time solvable cases. On the other hand, they proposed heuristics
and lower bounds alongside with an experimental study.

3. Trees

As mentioned in the introduction, we will prove the NP-hardness of the
SWA problem on two machines if the agreement graph is a tree. To prove
its NP-hardness, we will polynomially reduce the partition problem to the de-
cision problem derived from the SWA problem on two machines denoted DSWA.

Definition of the DSWA problem. We consider the decision problem associated
with the SWA on two identical machines denoted DSWA problem. The DSWA
problem is defined as follows. Instance: a set of jobs J , processing times pj ,
∀j ∈ J , an agreement graph G = (J,E), and a positive integer K <

∑
j∈J pj .

Question: is there a feasible schedule σ of the SWA problem with agreement
graph G on two identical machines such that Cmax(σ) ≤ K?

Partition problem. Instance: a finite set A of n elements, a size s(ai) for each

element ai ∈ A and a positive integer B =
∑

ai∈A s(ai)

2 . Question: is there a
subset A′ ⊆ A such that

∑
ai∈A′ s(ai) = B? This problem is NP-complete [6].

Theorem 1. The SWA problem on two machines where the agreement graph
is a tree is NP-hard.

Proof. We consider the partition problem defined above. We prove that the
partition problem can polynomially be reduced to the DSWA problem if the
agreement graph is a tree.

Given an instance of the partition problem, our corresponding instance of
the DSWA problem is defined as follows. We consider a set J of 2n+5 jobs and
a tree T = (J,E). J is composed of two subsets X and Y of n jobs each and
five jobs u, v1, v2, w1 and w2. The processing times of these jobs are given in
Table 1.
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Table 1: Processing times of the jobs of the DSWA problem.

Subsets - - - X Y
Jobs u vi wi xi yi

Proces. times 2B + 2 2 1 2s(ai) s(ai)
i - i ∈ {1, 2} i ∈ {1, 2} i = 1, . . . , n i = 1, . . . , n

The jobs that are in correspondence with the elements of A are the jobs of
both sets X and Y , where each job xi and each job yi are in correspondence
with the element ai (i = 1, . . . , n). One can view the jobs of X as the ”actual”
corresponding jobs and the jobs of Y as ”dummy” corresponding jobs. The tree
T is shown in Figure 2 and it is described as follows: job u is connected to all the
jobs of X and to jobs v1 and v2. Every job xi is connected to its corresponding
job yi, for i = 1, . . . , n. Similarly, each job vi is connected to its corresponding
job wi, for i ∈ {1, 2}.

u

v1 v2 x1 xn

w1 w2 y1 yn

. . .

. . .

X

Y

Figure 2: Agreement graph (tree) T .

To prove that the DSWA problem is NP-complete, we have to prove that
there exists a subset A′ ⊆ A such that

∑
ai∈A′ s(ai) = B if and only if there

exists a feasible schedule σ of the SWA problem on two machines with the
agreement graph T such that Cmax(σ) ≤ 5B + 4.

First, suppose that A′ ⊆ A is a subset of A such that
∑

ai∈A′ s(ai) = B. The
schedule σ is shown in Figure 3 and is described as follows: job vi (i ∈ {1, 2}) is
scheduled concurrently with jobs u and wi. The jobs ofX

′ ⊆ X, that correspond
to the elements of A′, are scheduled between jobs v1 and v2 opposite to job u.
The remaining jobs of X denoted X ′′ are scheduled opposite to their neighbors
Y ′′ ⊆ Y and the remaining jobs of Y denoted Y ′ are scheduled opposite to an
idle time. Of course, the jobs of Y ′′ have to be separated by idle times, but
to facilitate the readability of figures they are represented as a single bloc of
jobs, which has no incidence on the proof. The schedule σ has the following
makespan:

Cmax(σ) = pv1 +
∑
j∈X′

pj+pv2 +
∑
j∈X′′

pj+
∑
j∈Y ′

pj = 2+2B+2+2B+B = 5B+4
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0 2 2B+2 2B+4 4B+4 5B+4

w1 u w2 Y ′′

v1 X ′ v2 X ′′ Y ′

Figure 3: Schedule σ (the jobs of Y ′′ are separated by idle times).

Conversely, suppose there exists a feasible schedule σ of the SWA problem
on two machines with the agreement graph T such that Cmax(σ) ≤ 5B+4. We
denote by X ′ ⊆ X the subset of jobs that are scheduled opposite to the job u,
the set of the remaining jobs of X is denoted X ′′. The subset of jobs of Y , that
are adjacent to the jobs of X ′, is denoted Y ′, and the set of the remaining jobs
of Y is denoted Y ′′.

Now, suppose that job wi is entirely scheduled in parallel with vi, and vi is
scheduled, as much as possible, in parallel with u (i ∈ {1, 2}). So, the makespan
of the schedule σ depends on the sum of the processing times of the jobs of X ′.
Thus, we have three possible cases:

1.
∑

j∈X′ pj = 2B + ε (ε > 0): the schedule σ is described in Figure 4 and
has the following makespan:

Cmax(σ) = pv1
+

∑
j∈X′

pj + pv2 +
∑
j∈X′′

pj +
∑
j∈Y ′

pj

= 2 + (2B + ε) + 2 + (2B − ε) + (B +
ε

2
) = 5B + 4 +

ε

2

0 2 2B+2+ε 2B+4+ε 4B+4 5B+4+ ε
2

w1 u w2 Y ′′

v1 X ′ v2 X ′′ Y ′

Figure 4: Schedule σ in the first case (the jobs of Y ′′ are separated by idle times).

2.
∑

j∈X′ pj = 2B − ε (ε > 0): the schedule σ is described in Figure 5 and
has the following makespan:

Cmax(σ) = pw1
+ pu + pw2

+
∑
j∈X′′

pj +
∑
j∈Y ′

pj

= 1 + (2B + 2) + 1 + (2B + ε) + (B − ε

2
) = 5B + 4 +

ε

2
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0 1 2B+3 2B+4 4B+4+ε 5B+4+ ε
2

w1 u w2 Y ′′

v1 X ′ v2 X ′′ Y ′

Figure 5: Schedule σ in the second case (the jobs of Y ′′ are separated by idle times).

3.
∑

j∈X′ pj = 2B: the schedule σ is described in Figure 3 and has the
following makespan:

Cmax(σ) = pv1 +
∑
j∈X′

pj + pv2 +
∑
j∈X′′

pj +
∑
j∈Y ′

pj

= 2 + 2B + 2 + 2B +B = 5B + 4

Now, we discuss the cases where the assumptions regarding wi and vi (i ∈ {1, 2})
do not hold. If wi is not scheduled opposite to vi, the time interval opposite
to wi will be vacant and no other job than cover this time interval, and it is
the same for the job vi. In fact, if vi is not scheduled opposite to wi and u,
then it will create a time interval opposite to vi that could not be filled with
any job. So, the makespan of σ will not decrease if one of these configuration
occurs. For the first two cases, we have Cmax(σ) > 5B + 4, so whatever the
position of wi and vi are, the makespan of σ remains greater than 5B+4. Thus,∑

j∈X′ pj = 2B (case 3) is the only possible case that satisfy Cmax(σ) ≤ 5B+4.
Hence, the set A′ composed of the elements that are in correspondence with

the jobs of X ′ is a subset of A such that
∑

ai∈A′ s(ai) = B. �

4. Caterpillars

A caterpillar is a tree in which all the vertices are within distance 1 of
a central path. We present in this section a polynomial time algorithm to
optimally solve the problem where the agreement graph is a caterpillar.

4.1. Notations

In this section, we need the following notations:

• Let G = (J,E) be an agreement graph along with a weighted function p
over J, representing the processing times of J .

• The maximum weighted independent set (MWIS) of the agreement graph
G is denoted Ip(G).

• Ip(G) denotes the weight of a maximum independent set in G. (Ip(G) is
clearly a lower bound on the optimal makespan)

• N(j) is the set of neighbors of the job j ∈ J . This notation can be
generalized for a subset J ′ ⊆ J by N(J ′).

7
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• Lv(j) is the set of leaves connected to job j in G.

• tj is the starting time of a job j ∈ J , and t(N(j)) is defined as follows
t(N(j)) = mink∈N(j){tk}.

4.2. Caterpillar scheduling algorithm

Given a set of jobs J , and a caterpillar CAT = (J,E), an optimal schedule
σ of the SWA problem with agreement graph CAT on two identical machines
is constructed as described in the caterpillar scheduling algorithm given below.

The algorithm requires a maximum weighted independent set computation
(which is polynomially solvable for trees) as its core - this already tells us how
to split the jobs between the two machines. Apart from this, it just suffices to
define the starting times of the jobs and show that the result is optimal since
the weight of a maximum weighted independent set in CAT is a lower bound
on the makespan.

Algorithm 1 Caterpillar scheduling Algorithm

Input: CAT = (J,E), processing times pj , ∀j ∈ J ;
Output: An optimal schedule σ;

1 Determine a MWIS S∗ in the graph CAT (see paragraph 4.2.1);

2 Remove the edges connecting each pair of jobs of J \S∗ (remove all edges
that are not incident to S∗);

3 We obtain k connected caterpillars CATi = (Ji, Ei) (i = 1, . . . , kc);

4 For i = 1 to k do {Construction of the schedule σi for the graph CATi}
5 S∗

i = Ji ∩ S∗;
6 Arrange the jobs of Ji in a list Li (see paragraph 4.2.2);
7 According to the order induced by Li, schedule the jobs of S∗

i suc-
cessively on the first machine;

8 Schedule the jobs of Ji \ S∗
i in the second machine as follows:

t(α0
d) = 0;

if α and β are in Ji \ S∗
i , and are consecutive in this order with

respect to Li then tβ = max{tα + pα, t(N(β))};
endfor

9 Construct the optimal schedule σ by concatenating all the schedules σi,
i = 1, . . . , k;

4.2.1. Computation of S∗

To compute S∗, we use the dynamic program presented by Chen et al. [18]
which computes a MWIS for the graph CAT in O(n). This method has been
designed to compute the MWIS for trees, which is still valid for the case of
caterpillars.

ck is the number of connected graphs resulting from the second step.
dα0 is the first job of Ji \ S∗

i in the list Li.
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4.2.2. Arranging of jobs

To arrange the jobs, we take the jobs sequence of the central path (as ordered
in the central path), which is naturally defined in caterpillar graphs, and add
each job of this sequence to the list followed by its leaves (in any order).

4.3. Example

Consider a set J = {a, b, c, d, e, f, g, h, i, j, k, l,m, n, o} of 15 jobs and a cater-
pillar CAT = (J,E). The processing times of the jobs are given in Table 2 and
the agreement graph is described in Figure 6. We will solve the SWA problem
using the caterpillar scheduling algorithm:

b c d

e h k

n o

a

f

g

i j l

m

Figure 6: Agreement graph CAT (nodes filled with gray represent jobs of S∗).

Table 2: Processing times of the jobs.

Jobs a b c d e f g h i j k l m n o
Processing times 5 1 2 1 3 4 2 4 3 2 1 5 4 2 1

1. S∗ = {a, f, g, i, j, l,m}.
2. The only edge connecting the jobs of J \ S∗ is hk which we remove.

3. The two resulting caterpillars are CAT1 = (J1, E1) and CAT2 = (J2, E2).

4. The construction of the schedule σ1 corresponding to the agreement graph
CAT1:

(a) L1 = (a, b, c, d, e, f, g, h, i, j) (the jobs sequence of the considered cen-
tral path is (a, e, g, h)).

(b) S∗
1 = {a, f, g, i, j}.

(c) Jobs a, f , g, i and j are successively scheduled in this order on the
first machine at respective starting times ta = 0, tf = 5, tg = 9,
ti = 11, and tj = 14.

(d) Jobs b, c, d, e and h are scheduled in this order on the second machine
at respective starting times tb = 0, tc = 1, td = 3, te = 4 and th = 9.

(e) The obtained schedule σ1 is shown in Figure 7 with Cmax(σ1) = 16.

5. The construction of the schedule σ2 corresponding to the agreement graph
CAT2:

(a) L2 = (k, l,m, n, o) (the jobs sequence of the considered central path
is (k,m)).

(b) S∗
2 = {l,m}.

9



0 1 3 4 5 7 9 11 1314 16

M2 b c d e h

M1 a f g i j

Figure 7: Schedule σ1.

0 1 5 7 8 9

M1 l m

M2 k n o

Figure 8: Schedule σ2.

(c) Jobs l and m are successively scheduled in this order on the first
machine at respective starting times tl = 0 and tm = 5.

(d) Jobs k, n and o are scheduled in this order on the second machine at
respective starting times tk = 0, tn = 5 and to = 7.

(e) The obtained schedule σ2 is shown in Figure 8 with Cmax(σ2) = 9.

6. Concatenate the schedules σ1 and σ2 to obtain the optimal schedule σ
shown in Figure 9 with Cmax(σ) = 25.

0 1 3 4 5 7 9 11 1314 1617 21 232425

M2 b c d e h k n o

M1 a f g i j l m

Figure 9: Optimal schedule σ.

4.4. Polynomiality and optimality proofs of the algorithm

In order to prove that the caterpillar scheduling algorithm computes an op-
timal schedule in polynomial time, we present the following results. For a given
agreement graph CATi and schedules σi (i = 1, . . . , k), we have:

Claim 1. S∗
i is a MWIS for the agreement graph CATi.

Proof. Suppose that there exists a MWIS Ip(CATi) such that Ip(CATi) >∑
j∈S∗

i
pj , we also consider a set S′ = (S∗ \ S∗

i ) ∪ Ip(CATi). The sets S∗ \ S∗
i

and Ip(CATi) do not have any connection in CAT . In fact, (S∗ \ S∗
i ) ∩ Ji = ∅,

10



so the only edges that could connect S∗ \ S∗
i and Ip(CATi) are the removed

edges from the second step of the caterpillar scheduling algorithm. Notice that
these edges are not incident to the jobs of S∗. So, S′ is an independent set in
CAT . S′ also has a weight greater than S∗, in fact, since Ip(CATi) >

∑
j∈S∗

i
pj

we have: ∑
j∈S′

pj = Ip(CAT )−
∑
j∈S∗

i

pj + Ip(CATi) > Ip(CAT )

The weight of the independent set S′ is greater than the weight of MWIS, which
is a contradiction. �

Claim 2. ∀W ⊆ Ji \ S∗
i ,
∑

j∈W pj ≤
∑

j∈N(W ) pj.

Proof. Suppose that there exists a subset W ⊆ Ji \ S∗
i such that

∑
j∈W pj >∑

j∈N(W ) pj . We also consider a set S′ = (S∗
i \N(W ))∪W . We haveN(W ) ⊆ S∗

i

(see step 2 of the caterpillar scheduling algorithm). So, S′ is an independent set
in CATi and the weight of this independent set is also greater than the weight
of S∗

i . In fact since
∑

j∈W pj >
∑

j∈N(W ) pj we have:

∑
j∈S′

pj =
∑
j∈S∗

i

pj −
∑

j∈N(W )

pj +
∑
j∈W

pj >
∑
j∈S∗

i

pj

and this contradicts Claim 1. �

Claim 3. ∀β ∈ Ji \S∗
i , the neighbors of β are scheduled successively on the first

machine in the time interval Iβ = [t(N(β)), t(N(β)) +
∑

j∈N(β) pj ].

Proof. A job β ∈ Ji \ S∗
i either be a leaf or not. If β is a leaf: it has a unique

neighbor α, so α is scheduled in the time interval [tα, tα + pα] = Iβ .
If β is a non-leaf job, then β could have multiple leaves and a maximum

of two non-leaf neighbors α and γ. The jobs enter the list Li in this order:
job α (we could take γ first but without loss of generality we take α) and its
leaves then job β and its leaves, and finally the job γ as well as its leaves,
as shown in Figure 10. All the neighbors of β belong to S∗

i , therefore, these
jobs are scheduled successively on the first machine in the order induced by
Li. Thus, the jobs of N(β) are all scheduled successively in the time interval
[t(α), t(α) + pα +

∑
j∈Lv(β) pj + pγ ] = Iβ . �

Claim 4. ∀α, β ∈ Ji \ S∗
i if α and β are scheduled successively on the second

machine, then α and β have a common neighbor.

Proof. Without loss of generality, we suppose that α and β are scheduled in
this order. All the possible cases for α and β are given as follows:

1. α is a non-leaf job: let γ be a non-leaf neighbor of α.

a. β is the first scheduled leaf of Lv(γ) (see Figure 11a).

11



1

2

3

4

5

6

βα γ

... ... ...

Figure 10: An illustration of the neighbors of β and their leaves as well as the order in which
the jobs enter the list.

b. If L(γ) = ∅, then job β is another non-leaf neighbor of γ (other than
α) (see Figure 11b).

2. α is a leaf: let γ be a non-leaf neighbor of α.

a. β is a leaf of γ that is scheduled right after α (see Figure 11c);
b. If α is the last job scheduled among the jobs of Lv(γ), then β is the

next non-leaf neighbor of γ (see Figure 11d).

For all the possible cases, α and β have γ as a common neighbor. �

α

β

γ

... ...

(a) Case 1.a

α βγ

...

(b) Case 1.b

α β

γ

... ...

(c) Case 2.a

α

βγ

...

(d) Case 2.b

Figure 11: All the possible cases for two successive jobs α and β on the second machine (the
nodes filled with gray represent the jobs of S∗

i ).

Claim 5. If W = {α, . . . , β} is a set of consecutive jobs of Ji \ S∗
i then the

jobs of N(W ) are scheduled on the first machine in the time interval IW =
[t(N(α)), t(N(β)) +

∑
j∈N(β) pj ].

Proof. Consequence of Claim 3 and Claim 4. �
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Lemma 1. Each job β ∈ Ji\S∗
i is scheduled in the time interval Iβ = [t(N(β)),

t(N(β)) +
∑

j∈N(β) pj ].

Proof. We suppose that some job β ∈ Ji \ S∗
i is not scheduled in the time

interval Iβ . β is not scheduled in this interval implies that: either tβ < t(N(β))
or tβ + pβ > t(N(β)) +

∑
j∈N(β) pj . Let β0 be the job, right before β on the

second machine.

1. tβ < t(N(β)): job β has a starting time tβ = max{tβ0
+pβ0

, t(N(β))}, so,
we cannot have tβ < t(N(β)).

2. tβ + pβ > t(N(β)) +
∑

j∈N(β) pj : since tβ = max{tβ0
+ pβ0

, t(N(β))} we
distinguish two cases:
(a) tβ = tβ0

+ pβ0
: let α be the last job scheduled on the second ma-

chine such that α precedes β and tα = t(N(α)). We also consider
W = {α, . . . , β} the set of consecutive jobs scheduled on the sec-
ond machine from α to β. There is no idle times between the
jobs of W , so the jobs of W are scheduled in the time intervals
[tα, tβ + pβ ]. The jobs of N(W ) are scheduled in the time inter-
val [t(N(α), t(N(β)) +

∑
j∈N(β) pj ] (Claim 5) as shown in Figure 12.

Since tα = t(N(α)) and tβ + pβ > t(N(β)) +
∑

j∈N(β) pj , we have∑
j∈W pj >

∑
j∈N(W ) pj which is a contradiction according to Claim

2.
(b) t(β) = t(N(β)): this case is reported to the case 2.a where α = β

and W = {β}.

�

α ... β

N(α) ... N(β)

︸ ︷︷ ︸
W

︷ ︸︸ ︷
N(W )

Figure 12: Scheduling of the jobs of both W and N(W ).

Theorem 2. The caterpillar scheduling algorithm computes an optimal sched-
ule σ of the SWA problem on two identical machines with the caterpillar CAT
in O(n) time, with Cmax(σ) = Ip(CAT ).

Proof. The determination of a MWIS for caterpillars (step1) is done in O(n)
(see [18]) and the determination of the connected components of a caterpil-
lar graph (step 3) is done in O(n) (see Hopcroft and Tarjan [19]). Then, the
complexity of the caterpillar scheduling algorithm is trivially O(n).
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For i = 1, . . . , k, the schedule σi is feasible and Cmax(σi) ≤ Ip(CATi) (direct
consequence of Lemma 1). Since the schedule σ is the concatenation of the
schedules σi, i = 1, . . . , k, we have:

Cmax(σ) =

k∑
i=1

σi ≤
k∑

i=1

∑
j∈S∗

i

pj ≤
∑
j∈S∗

pj = Ip(CAT )

Ip(CAT ) is a lower bound on the optimal makespan. Therefore, the caterpil-
lar scheduling algorithm computes an optimal schedule σ of the SWA problem
on two machines with the caterpillar CAT as an agreement graph in O(n) such
that Cmax(σ) = Ip(CAT ). �

Corollary 1. The SWA problem on two identical machines where the agree-
ment graph is either a path or a star graph can optimally be solved in linear
time using the caterpillar scheduling algorithm.

Proof. It is a consequence of Theorem 2. In fact, star graphs and paths are
subclasses of caterpillars. �

5. Cycles

Given a set of jobs J and a cycle C = (J,E), an optimal schedule of the SWA
problem with the agreement graph C on two identical machines is constructed
as described in the cycle scheduling algorithm given below.

Algorithm 2 Cycle scheduling algorithm

Input: C = (J,E), processing times pj , ∀j ∈ J ;
Output: An optimal schedule σ;
Begin

1 Foreach e ∈ E do

2 Compute an optimal schedule of the SWA problem for the path P =
(J,E − e) using the scheduling caterpillar algorithm;

enddo

3 σ is the schedule with the best makespan;
end.

Claim 6. In the schedule σ, there exists at least one job j ∈ J such that j is
not scheduled opposite to its two neighbors.

Proof. Suppose that each job j ∈ J is scheduled opposite to its two neighbors.
This implies that the jobs are scheduled in a circular manner which is impossible.
�
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Corollary 2. The cycle scheduling algorithm computes an optimal schedule of
the SWA problem with a cycle agreement graph on two identical machines in
O(n2).

Proof. To build a feasible schedule, we cannot use all the agreements repre-
sented by a cycle (according to Claim 6). So, solving the SWA problem when the
agreement graph is a cycle is equivalent to solve the problem by removing the
”unused” edge from the cycle. Removing all the edges one at a timee and solve
the SWA problem for each of the resulting paths, provides an optimal sched-
ule σ. The cycle scheduling algorithm uses n times the caterpillar scheduling
algorithm, so, the complexity of the cycle scheduling algorithm is O(n2).

6. Conclusion

In the present paper, we have considered the problem of scheduling with
agreements. We have proved the NP-hardness of the problem for the case of
trees. Polynomial time algorithms have been proposed to optimally solve the
problem when the agreement graph is either a caterpillar or a cycle.

For future work, it would be interesting to design and implement exact
and/or approximation methods to solve the NP-hardness cases of the problem
including the one presented in this paper.
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